Mixing Conditions for Multivariate Infinitely Divisible Processes with an Application to Mixed Moving Averages and the supOU Stochastic Volatility Model

نویسندگان

  • Florian Fuchs
  • Robert Stelzer
چکیده

We consider strictly stationary infinitely divisible processes and first extend the mixing conditions given in Maruyama [18] and Rosiński and Żak [23] from the univariate to the d-dimensional case. Thereafter, we show that multivariate Lévy-driven mixed moving average processes satisfy these conditions and hence a wide range of well-known processes such as superpositions of Ornstein-Uhlenbeck (supOU) processes or (fractionally integrated) continuous time autoregressive moving average (CARMA) processes are always mixing. Finally, mixing of the log-returns and the integrated volatility process of a multivariate supOU type stochastic volatility model, recently introduced in Barndorff-Nielsen and Stelzer [5], is established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tail Behavior of Multivariate Lévy-Driven Mixed Moving Average Processes and supOU Stochastic Volatility Models

Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t − s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) CARMA processes and increments of fractional Lévy processes. In this paper, we introduce multivariate MMA pro...

متن کامل

Convergence of Point Processes with Weakly Dependent Points

For each n ≥ 1, let {Xj,n}1≤j≤n be a sequence of strictly stationary random variables. In this article, we give some asymptotic weak dependence conditions for the convergence in distribution of the point process Nn = ∑n j=1 δXj,n to an infinitely divisible point process. From the point process convergence, we obtain the convergence in distribution of the partial sum sequence Sn = ∑n j=1 Xj,n to...

متن کامل

The multivariate supOU stochastic volatility model

Using positive semidefinite supOU (superposition of Ornstein-Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modelling long range dependence effects. The finiteness of moments and the second order structure of the volatility, the log returns, as well as their “squares” are discussed in detail. M...

متن کامل

Integer-valued trawl processes: A class of stationary infinitely divisible processes

This paper introduces a new continuous-time framework for modelling serially correlated count and integer-valued data. The key component in our new model is the class of integer-valued trawl (IVT) processes, which are serially correlated, stationary, infinitely divisible processes. We analyse the probabilistic properties of such processes in detail and, in addition, study volatility modulation ...

متن کامل

Functional Regular Variation of Lévy-driven Multivariate Mixed Moving Average Processes

We consider the functional regular variation in the space D of càdlàg functions of multivariate mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t− s)Λ(dA, ds). We give sufficient conditions for an MMA process (Xt) to have càdlàg sample paths. As our main result, we prove that (Xt) is regularly varying in D if the driving Lévy basis is regularly varying and the kernel function f s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011