Mixing Conditions for Multivariate Infinitely Divisible Processes with an Application to Mixed Moving Averages and the supOU Stochastic Volatility Model
نویسندگان
چکیده
We consider strictly stationary infinitely divisible processes and first extend the mixing conditions given in Maruyama [18] and Rosiński and Żak [23] from the univariate to the d-dimensional case. Thereafter, we show that multivariate Lévy-driven mixed moving average processes satisfy these conditions and hence a wide range of well-known processes such as superpositions of Ornstein-Uhlenbeck (supOU) processes or (fractionally integrated) continuous time autoregressive moving average (CARMA) processes are always mixing. Finally, mixing of the log-returns and the integrated volatility process of a multivariate supOU type stochastic volatility model, recently introduced in Barndorff-Nielsen and Stelzer [5], is established.
منابع مشابه
Tail Behavior of Multivariate Lévy-Driven Mixed Moving Average Processes and supOU Stochastic Volatility Models
Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t − s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) CARMA processes and increments of fractional Lévy processes. In this paper, we introduce multivariate MMA pro...
متن کاملConvergence of Point Processes with Weakly Dependent Points
For each n ≥ 1, let {Xj,n}1≤j≤n be a sequence of strictly stationary random variables. In this article, we give some asymptotic weak dependence conditions for the convergence in distribution of the point process Nn = ∑n j=1 δXj,n to an infinitely divisible point process. From the point process convergence, we obtain the convergence in distribution of the partial sum sequence Sn = ∑n j=1 Xj,n to...
متن کاملThe multivariate supOU stochastic volatility model
Using positive semidefinite supOU (superposition of Ornstein-Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modelling long range dependence effects. The finiteness of moments and the second order structure of the volatility, the log returns, as well as their “squares” are discussed in detail. M...
متن کاملInteger-valued trawl processes: A class of stationary infinitely divisible processes
This paper introduces a new continuous-time framework for modelling serially correlated count and integer-valued data. The key component in our new model is the class of integer-valued trawl (IVT) processes, which are serially correlated, stationary, infinitely divisible processes. We analyse the probabilistic properties of such processes in detail and, in addition, study volatility modulation ...
متن کاملFunctional Regular Variation of Lévy-driven Multivariate Mixed Moving Average Processes
We consider the functional regular variation in the space D of càdlàg functions of multivariate mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t− s)Λ(dA, ds). We give sufficient conditions for an MMA process (Xt) to have càdlàg sample paths. As our main result, we prove that (Xt) is regularly varying in D if the driving Lévy basis is regularly varying and the kernel function f s...
متن کامل